Abstract

In professional cricket, where bowlers can bowl balls that reach speeds of up to 160 km h-1, effective head protection is vital. Current head protection equipment typically consists of a helmet with a high impact grade polypropylene shell, a high density EPS liner, and a metal face guard. Most of the weight in existing helmets is attributed to the steel grill used as the face guard. We present a virtual design approach to the development and evaluation of new face guards made from alternative materials. In particular, we investigate a face guard design for cricket made from polycarbonate rather than steel using an explicit dynamic finite element analysis (FEA) approach. The FEA model developed for this purpose incorporates the headform, helmet, polycarbonate face guard and the impacting ball. ABAQUS CAE was used for FEA. HyperMesh and SolidWorks were used to develop the geometric model. This work identifies appropriate modelling and simulation strategies, and key design attributes for the development of new face guards using alternative materials. A preliminary study shows that by using polycarbonates it is possible to reduce the mass of the face guard by 20%, thus contributing to greater comfort of the players without compromising their safety. The key criteria for reduction of ball deceleration by at least 25% at each test site were satisfied, with deceleration reduction values ranging from 44% to 87% from those due to ball impact with the bare head.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call