Abstract

Measles is one of the top communicable diseases, which is still responsible for 2.6 million deaths every year. Due to this reason, the paper focuses on measles transmission dynamics concerning the impact of indirect contact rate (transmitted from the host of the virus to the healthy individual) and improving the SEVIR model into the SVIRP model. From the model, we first estimated the disease-free equilibrium, calculated the effective reproduction numberREff, and established the stability analysis. The Castillo–Chavez stability criterion is used to demonstrate the global stability of the disease-free equilibrium point, while the linearization method is used to justify its local stability analysis and gives a result REff<1. The stability analysis of endemic equilibrium point is explained by defining a Lyapunov function, and its global stability exists whenREff> 1. To identify the effect of parameters on the transmission dynamics, we performed sensitivity index and numerical simulation. From the result, we obtained that the indirect contact rate has the highest impact in maximizing the transmission dynamics of measles. Also, we found that working on prevention and treatment strategies brings a significant contribution in reducing the disease effect in the community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call