Abstract

A method for following fragmentation simulations further in time using smoothed particle hydrodynamics (SPH) is presented. In a normal SPH simulation of the collapse and fragmentation of a molecular cloud, high-density regions of gas that form protostars are represented by many particles with small separations. These high-density regions require small time steps, limiting the time for which the simulation can be followed. Thus, the end result of the fragmentation can never be definitively ascertained, and comparisons between cloud fragmentation calculations and the observed characteristics of stellar systems cannot be made. In this paper, each high-density region is replaced by a single, non-gaseous particle, with appropriate boundary conditions, which contains all the mass in the region and accretes any infalling mass. This enables the evolution of the cloud and the resulting protostars to be followed for many orbits or until most of the original cloud mass has been accreted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call