Abstract

A semi-analytical approach to free dry and wet vibration of a trapezoidal, 2-way tapered, pivoted hollow spade rudder is presented. The rudder is modeled as a hollow Kirchhoff’s plate, with a NACA0018 profile chord section. The rudder pivot is modeled as a combination of a translational spring and a rotational spring. The span-wise and chord-wise non-uniform beam vibration is first analyzed by the Rayleigh-Ritz method, to establish the non-uniform beam modeshapes, which act as admissible functions to the Galerkin’s method for plate vibration. Eigenvalue analysis generates the plate natural frequencies and the plate modeshapes. Alternately, uniform beam modeshapes themselves are used as admissible functions into the Galerkin’s method. Frequencies are analyzed for various pivot positions, taper ratios, and NACA sections. For the wet vibration, constant strength source distribution technique is used to generate the added mass of a 2D aerofoil. Also, 3D panel method is used to generate the modal added masses, and hence the wet natural frequencies. The added mass coefficient is generated for various aerofoil fineness ratios, pivot fixities, taper ratios, aspect ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call