Abstract

A model predicting 137Cs uptake in plants was applied on data from artificially contaminated lysimeters. The lysimeter data involve three different crops (beans, ryegrass and lettuce) grown on five different soils between 3 and 5 years after contamination and where soil solution composition was monitored. The mechanistic model predicts plant uptake of 137Cs from soil solution composition. Predicted K concentrations in the rhizosphere were up to 50-fold below that in the bulk soil solution whereas corresponding 137Cs concentration gradients were always less pronounced. Predictions of crop 137Cs content based on rhizosphere soil solution compositions were generally closer to observations than those based on bulk soil solution composition. The model explained 17% (beans) to 91% (lettuce) of the variation in 137Cs activity concentrations in the plants. The model failed to predict the 137Cs activity concentration in ryegrass where uptake of the 5-year-old 137Cs from 3 soils was about 40-fold larger than predicted. The model generally underpredicted crop 137Cs concentrations at soil solution K concentration below about 1.0 mM. It is concluded that 137Cs uptake can be predicted from the soil solution composition at adequate K nutrition but that significant uncertainties remain when soil solution K is below 1 mM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call