Abstract

AbstractEl Niño–Southern Oscillation strongly influences the interannual variability of rainfall over the Pacific, shifting the position and orientation of the South Pacific convergence zone (SPCZ) and intertropical convergence zone (ITCZ). In 1982/83 and 1997/98, very strong El Niño events occurred, during which time the SPCZ and ITCZ merged into a single zonal convergence zone (szCZ) extending across the Pacific at approximately 5°S. The sea surface temperature anomalies (SSTAs) reached very large values and peaked farther east compared to other El Niño events. Previous work shows that tropical Pacific precipitation responds nonlinearly to changing the amplitude of the El Niño SSTA even if the structure of the SSTA remains unchanged, but large canonical El Niño SSTAs cannot reproduce the szCZ precipitation pattern. This study conducts idealized, SST-forced experiments, starting with a large-amplitude canonical El Niño SSTA and gradually adding a residual pattern until the full (1982/83) and (1997/98) mean SST is reproduced. Differences between the canonical and strong El Niño SSTA patterns are crucial in generating an szCZ event. Three elements influence the precipitation pattern: (i) the local meridional SST maxima influences the ITCZ position and western Pacific precipitation, (ii) the total zonal SST maximum influences the SPCZ position, and (iii) the equatorial Pacific SST influences the total amount of precipitation. In these experiments, the meridional SST gradient increases as the SSTAs approach szCZ conditions. Additionally, the precipitation changes evident in szCZ years are primarily driven by changes in the atmospheric circulation, rather than thermodynamic changes. The addition of a global warming SST pattern increases the precipitation along the equator and shifts the ITCZ farther equatorward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.