Abstract

Agriculture produces an estimated 14.5% of global anthropogenic greenhouse gases, with livestock emissions being the largest source of enteric methane. Reducing greenhouse gas (GHG) emissions from production and processing of beef cattle will become increasingly important with time, particularly in line with global efforts to mitigate rising GHG emissions. The present study compared several GHG emission scenarios from beef cattle grazing on irrigated Leucaena leucocephala (Lam.) de Wit cv. Cunningham (leucaena) in Queensland, Australia. Animals began grazing the leucaena paddocks when they were 16 months old and continued until ~240 days, before being sold to market. Three scenarios were modelled with cattle grazing leucaena and the resulting GHG emissions calculated, representing (1) the current leucaena paddock (current leucaena scenario), (2) clearing native vegetation and extending the leucaena paddock (extended leucaena scenario) and (3) extending the leucaena paddock onto previously cleared paddocks (alternative leucaena scenario). These were compared with a pre-scenario baseline, where the steers grazed on native vegetation until the time of sale. Herd GHG emission intensities (EI) were reduced in comparison with the baseline (EI of 8.4 tCO2-e/t liveweight sold) for all the leucaena scenarios, where reductions were modelled for the current, extended and alternative leucaena scenarios, which had an EI of 3.9, 3.7 and 3.6 tCO2-e/ t liveweight sold, respectively. Reductions were attributed to the higher growth rates of the steers on leucaena and the anti-methanogenic potential of leucaena. Where leucaena was planted on previously cleared paddocks, carbon stocks (t C/ha) nearly doubled a decade following planting, with most carbon sequestered in the soil. However, total carbon stocks on the property reduced over the modelled period (112 years), where native vegetation, e.g. eucalyptus woodland, was cleared for leucaena planting, but soil carbon yield increased. The combined sequestration of leucaena and the reduction of GHG emission intensities resulted in overall net reductions of GHG emissions for the three leucaena scenarios compared with the baseline. These results demonstrated that the use of leucaena for grazing can be an effective means for farmers to reduce the GHG emissions and increase productivity of their herds. The study also demonstrated that it would take 9 years of reduced emissions to compensate for the carbon lost as emissions from clearing the eucalyptus woodland, suggesting that farmers should use other methods of intensifying production from existing leucaena paddocks if their sole purpose is short-term emissions abatement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call