Abstract
The paper reports on the thermal performance of the sub-system for a solar thermal particle technology used to generate high temperature air, including refractory-lined particle-laden receiver, particle separator, particle storage and particle feeder. These assessments are made with a transient mathematical model developed to calculate the heat and mass transfer within the cavity of the receiver together with the thermal losses to the surroundings, incorporating the influence of solar transients during start-up, turndown or shutdown periods. New insights are provided of the influences of the variables of refractory configuration and of the potential operating controller parameters to manage the influence of solar variability on the annual thermal performance of the system, considering the useful thermal gain of hot air. The model is further used to advance the understanding of the sensitivity of the thermal performance to the mass flow rate of inlet air and mass loading of particles in the receiver on the sensible energy harnessed. The influence of the returned air temperature on the receiver thermal performance is also assessed, to provide insights on the suitability of the present configuration to re-heat already hot air in a CST system. Further to this, the thermal outputs are compared with available CFD data for this configuration, and with that reported for a cavity reactor, to provide information on the model validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.