Abstract

A lateral p-n-p compact model, suitable for computer-aided circuit design purposes, is introduced. In this formulation, called MODELLA, the equivalent circuit topology, analytical equations, and model parameters are derived directly from the physics and structure of the lateral p-n-p. MODELLA incorporates current crowding effects, substrate effects, and a bias-dependent output conductance and it uses the approach to lateral p-n-p high injection modeling whereby the main currents and charges are independently related to bias-dependent minority-carrier concentrations. Model-specific aspects of the parameter determination strategy are discussed; the Ning-Tang resistance determination method, for example, is shown to be highly suitable for lateral p-n-p devices. The effectiveness of this strategy and the improved performance of this physics-based formulation become evident in comparisons between MODELLA and the standard SPICE Gummel-Poon model using measured device characteristics. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.