Abstract
In a great diversity of knowledge areas, the variables that are involved in the behavior of a complex system, perform normally, a non-linear system. The search of a function that express those behavior, requires techniques as mathematics optimization techniques or others. The new paradigms introduced in the soft computing, as fuzzy logic, neuronal networks, genetics algorithms and the fusion of them like the neuro-fuzzy systems, and so on, represent a new point of view to deal this kind of problems due to the approximation properties of those systems (universal approximators). This work shows a methodology to develop a tool based on a neuro-fuzzy system of ANFIS (Adaptive Neuro-Fuzzy Inference System) type with piecewise multilinear (PWM) behaviour (introducing some restrictions on the membership functions -triangular- chosen in the ANFIS system). The obtained tool is named PWM-ANFIS Tool, that allows modelize a n-dimensional system with one output and, also, permits a comparison between the neuro-fuzzy system modelized, a purely PWM-ANFIS model, with a generic ANFIS (Gaussian membership functions) modelized with the same tool. The proposed tool is an efficient tool to deal non-linearly complicated systems. Keywords: ANFIS model, Function approximation, Matlab environment, Neuro-Fuzzy CAD tool, Neuro-Fuzzy modelling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computer Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.