Abstract
In the search for efficient molecular dynamics simulation models both simplicity and acceptable accuracy matter. In the present study, a model of the graphene- $$\hbox {H}_2$$ physisorption system is used to explore its performance and limitations under canonical NVT and microcanonical NVE simulation conditions. The model implies several simplifications that can be summarized in (a) a single ideal planar frozen graphene-like layer of C atoms, (b) rigid rotor $$\hbox {H}_2$$ molecules and (c) interaction potentials written as C–H2 and $$\hbox {H}_2$$ – $$\hbox {H}_2$$ site–site Improved Lennard-Jones potentials parameterized to reproduce DFT calculations. This model can be used in a variety of molecular dynamics simulation conditions, both in NVT and NVE ensembles. Such simulations lead to the formation of a single layer of adsorbed $$\hbox {H}_2$$ molecules in dynamically stable equilibrium with a fluid-phase region. In addition, the incipient formation of secondary layers for high-density conditions is also observed. Some properties as average pressure, temperatures and fluid-phase densities are discussed as well as possible improvements of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.