Abstract
As composites are materials whose properties can essentially be customized to suit the necessities of the engineering application on hand, they are being widely used in many applications for radically different purposes. In order to ensure quality in production process of composite products, a solid understanding of the process involved during its manufacturing is essential to ensure the product is free from both internal and external defects. To that aim, a study was conducted to model Thrust force and Torque on drilling of Glass-Hemp-Flax reinforced polymer composite by fabricating and maching the composite as per Taguchi's L 27 Orthogonal Array. The process parameters considered for modeling are drill diameter, spindle speed and feed rate. Using the process control parameters as inputs and thrust force and torque to be predicted as outputs, artificial neural networks (ANNs) were created to model the effects of the inputs and their interactions. The predictions obtained from the neural networks were compared with the values obtained from experimentation. Excellent agreement was found between the two sets of values, establishing grounds for more extensive use of neural networks in modelling of machining parameters.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.