Abstract

ABSTRACTIn this paper we introduce a new class of multivariate unimodal distributions, motivated by Khintchine's representation for unimodal densities on the real line. We start by introducing a new class of unimodal distributions which can then be naturally extended to higher dimensions, using the multivariate Gaussian copula. Under both univariate and multivariate settings, we provide MCMC algorithms to perform inference about the model parameters and predictive densities. The methodology is illustrated with univariate and bivariate examples, and with variables taken from a real data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.