Abstract

This paper is concerned with modeling and identification of wireless channels using noisy measurements. The models employed are governed by stochastic differential equations (SDEs) in state space form, while the identification method is based on the expectation-maximization (EM) algorithm and Kalman filtering. The algorithm is tested against real channel measurements. The results presented include state space models for the channels, estimates of inphase and quadrature components, and estimates of the corresponding Doppler power spectral densities (DPSDs), from sample noisy measurements. Based on the available measurements, it is concluded that state space models of order two are sufficient for wireless flat fading channel characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call