Abstract

The limited availability of local climatological stations and the limitations to predict the wind speed (WS) accurately are significant barriers to the expansion of wind energy (WE) projects worldwide. A methodology to forecast accurately the WS at the local scale can be used to overcome these barriers. This study proposes a methodology to forecast the WS with high-resolution and long-term horizons, which combines a Fourier model and a nonlinear autoregressive network (NAR). Given the nonlinearities of the WS variations, a NAR model is used to forecast the WS based on the variability identified with the Fourier analysis. The NAR modelled successfully 1.7 years of wind-speed with 3 hours of the time interval, what may be considered the longest forecasting horizon with high resolution at the moment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.