Abstract
The precision of vertical position and atmospheric water vapor content determined by the Global Positioning System (GPS) is limited by errors due to tropospheric delay. One factor is the spatial and temporal variability in tropospheric refractivity caused by passing weather fronts. We can explain some of the temporal characteristics of estimated tropospheric delay in terms of a simple path delay model as a function of frontal parameters. These results suggest that GPS could be used to estimate the geometry and passage time of a frontal zone. We have developed indices which detect tropospheric variability from GPS data alone; the detection rate of fronts with this approach is up to 70%. Once detected, we eliminated days affected by fronts or other tropospheric variability from the time series of station height estimates, resulting in improved long‐term repeatability. The additional variance attributable to fronts is estimated to be up to 10 mm2 at Herstmonceux, England, where fronts occur every 2–3 days. The effect of fronts on the horizontal station component is up to 80% smaller than for the vertical. Studies in the field of GPS meteorology may be improved by estimating frontal parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.