Abstract

A two-phase model and its application to wavefields numerical simulation are discussed in the context of modeling of compressible fluid flows in elastic porous media. The derivation of the model is based on a theory of thermodynamically compatible systems and on a model of nonlinear elastoplasticity combined with a two-phase compressible fluid flow model. The governing equations of the model include phase mass conservation laws, a total momentum conservation law, an equation for the relative velocities of the phases, an equation for mixture distortion, and a balance equation for porosity. They form a hyperbolic system of conservation equations that satisfy the fundamental laws of thermodynamics. Two types of phase interaction are introduced in the model: phase pressure relaxation to a common value and interfacial friction. Inelastic deformations also can be accounted for by source terms in the equation for distortion. The thus formulated model can be used for studying general compressible fluid flows in a deformable elastoplastic porous medium, and for modeling wave propagation in a saturated porous medium. Governing equations for small-amplitude wave propagation in a uniform porous medium saturated with a single fluid are derived. They form a first-order hyperbolic PDE system written in terms of stress and velocities and, like in Biot’s model, predict three type of waves existing in real fluid-saturated porous media: fast and slow longitudinal waves and shear waves. For the numerical solution of these equations, an efficient numerical method based on a staggered-grid finite difference scheme is used. The results of solving some numerical test problems are presented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.