Abstract

A distributed object-based rainfall–runoff simulation (DORS) model with incorporation of detailed impervious surface-area (ISA) data, derived from digital true-color orthophotography data with high spatial resolution, was developed. This physically based model simulates hydrologic processes of precipitation interception, infiltration, runoff, evapotranspiration, change of soil moisture, change of water-table depth, runoff routing, groundwater routing, and channel-flow routing. The modeling processes take objects based on land-cover types as fundamental spatial units in order to reduce data volume, increase computational efficiency, strengthen representation of watersheds, and utilize the data in variable scales. US Geological Survey stream-gaging data were used to validate the temporal variation of simulated discharge within two watersheds in Rhode Island State. The ratio of absolute error to the mean and the Nash coefficient in the validation period are 7.2% and 0.90 for the first watershed, and 8.0% and 0.77 for the second watershed, respectively. The results indicate that the DORS model is able to capture the relationship between rainfall and runoff in the study area, and that it is applicable in the further study of ISA impacts on the water cycle and associated pollution problems. The results also demonstrate that the performance of the hydrologic simulation is improved with ISA data with high spatial resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.