Abstract
Local transport losses limit high-current density performance of fuel-cells, especially at low Pt-loadings. Optimizing catalyst-layer structure and material properties to mitigate these losses is critical for wide-scale fuel-cell commercialization. Carbon supports form the primary porous structure of catalyst layers in which Pt particles are deposited and ionomer films are distributed. Unlike non-porous carbon supports, high surface area carbon support is unique in its relative humidity dependent Pt utilization and performance due to presence of Pt particles in the micropores interior of carbon particles. We model water uptake and Pt utilization in catalyst layers with high-surface-area carbon support. Interactions between functional groups on the carbon pore walls and water play a vital role in controlling water uptake from water vapor by catalyst layers. Ionomer is shown to influence proton access in micropores, even though it may not deposit into the micropores.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.