Abstract

The deterioration rate of concrete structures is directly influenced by the rate of moisture ingress. Modeling moisture ingress in concrete is therefore essential for quantitative estimation of the service life of concrete structures. While models for saturated moisture transport are commonly used, concrete, during its service life, is rarely saturated and some degree of damage is often present. In this work, we investigate whether classical isothermal unsaturated moisture transport can be used to simulate moisture ingress in damaged mortar and concrete and we compare the results of numerical simulations with experimental measurements of water sorption. The effect of hysteresis of moisture retention is also considered in the numerical simulations. The results indicate that the unsaturated moisture transport models well simulate early stages of moisture ingress at all damage levels, where capillary suction is the prominent mechanism. At later stages of moisture transport, where air diffusion and dissolution have a more significant contribution, simulations that consider moisture hysteresis compare most favorably with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call