Abstract

Field measurements of voltage and current is the most effective way for characterizing the electric response of an EAF that describe the nonlinear behavior of AC EAF loads. Sufficient measured information can be adopted to develop an appropriate EAF model. In this paper, two classic methods based on measured data, harmonic current injections and equivalent harmonic voltage sources, for the EAF load modeling are reviewed. For comparison, two advanced methods based on actual recorded data, cubic spline interpolation and radial basis function neural network (RBFNN), are also proposed to model the EAF load. A steel plant power system with EAF loads is used for field measurements and computer simulations. Comparisons between the results of measured data and simulations for the four EAF models are being made according to the voltage/current waveforms and voltage-current characteristics. It is shown that the advanced models yield better performance than classic models of the EAF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.