Abstract
Image understanding and image semantics processing have recently become an issue of critical importance in computer vision R&D. Biological vision has always considered them as an enigmatic mixture of perceptual and cognitive processing faculties. In its impetuous and rash development, computer vision without any hesitations has adopted this stance. I will argue that such a segregation of image processing faculties is wrong, both for the biological and the computer vision. My conjecture is that images contain only one sort of information – the perceptual (physical) information, which can be discovered in an image and elicited for further processing. Cognitive (semantic) information is not a part of image-conveyed information. It belongs to a human observer that acquires and interprets the image. Relying on a new definition of “information”, which can be derived from Kolmogorov’s complexity theory and Chaitin’s notion of algorithmic information, I propose a unifying framework for visual information processing, which explicitly accounts for perceptual and cognitive image processing peculiarities. I believe, it would provide better scaffolding for modeling visual information processing in human brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.