Abstract

Presented is a harmonic-balance computational fluid dynamic approach for modeling limit-cycle oscillation behavior of aeroelastic airfoil configurations in a viscous transonic flow. For the NLR 7301 airfoil configuration studied, accounting for viscous effects is shown to significantly influence computed limit-cycle oscillation trends when compared to an inviscid analysis. A methodology for accounting for changes in mean angle of attack during limit-cycle oscillation is also developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.