Abstract

We present an extended self-consistent charge density-functional tight-binding (SCC-DFTB) method that allows for computing vibrational infrared spectra. The extension is based on introducing an additional term in the SCC-DFTB energy formula that describes effectively the interaction of external electric field with molecular electron density distribution. The extended SCC-DFTB method is employed to model vibrational infrared spectra of 16 organic molecules. The calculated spectra are compared to experiment and to spectra obtained with density functional theory. For most of the molecules, the SCC-DFTB method reproduces the experimental spectra in a very satisfactory manner. We discuss the drawbacks and possible applications of this new scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call