Abstract
This study modeled the US Dollar and Nigerian Naira exchange rates during COVID-19 pandemic period using a classical statistical method – Autoregressive Integrated Moving Average (ARIMA) – and two machine learning methods – Artificial Neural Network (ANN) and Random Forest (RF). The data were divided into two sets namely: the training set and the test set. The training set was used to obtain the parameters of the model, and the performance of the estimated model was validated on the test set that served as new data. Though the ARIMA and random forest performed slightly better than the neural network in the training set, their performance in the test set was poor. The neural network with 5 nodes in the input layer, 5 nodes in the hidden layer and 1 node in the output layer (ANN (5,5,1)) performed better on the new data set (test set) and is chosen as the best model to forecast for future USD to NGN exchange rate. The information from the high-performance model (ANN (5, 5, 1)) for modeling the USD to NGN exchange rate will assist econometric trading of the currencies and offer both speculative and precautionary assistance to individuals, households, firms and nations who use the currencies locally and for international trade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.