Abstract

Type-1 iodothyronine deiodinase (ID-1) catalyzes the reductive elimination of 5'-I and 5-I on the phenolic and tyrosyl rings of thyroxine (T4), respectively. Chemically verifying whether I atoms with different chemical properties undergo deiodination through a common mechanism is challenging. Herein, we report the modeling of ID-1 using aliphatic diselenide (Se-Se) and selenenylsulfide (Se-S) compounds. Mechanistic investigations of deiodination using the ID-1-like reagents suggested that the 5'-I and 5-I deiodinations proceed via the same mechanism through an unstable intermediate containing a Se⋅⋅⋅I halogen bond between a selenolate anion, reductively produced from Se-Se (or Se-S) in the compound, and an I atom in T4. Moreover, imidazolium and thiol groups, which may act as general acid catalysts, promoted the heterolytic cleavage of the C-I bond in the Se⋅⋅⋅I intermediate, which is the rate-determining step, by donating a proton to the C atom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.