Abstract

In this work, a robust and pragmatic method has been developed, validated, and applied to describe two-phase flow behaviour of a multifractured horizontal well (MFHW) in a shale gas formation. As for a fracture subsystem, its permeability modulus, non-Darcy flow coefficient, and slippage factor have been defined and embedded into the governing equation, while an iterative method is applied to update the gas/water saturation in each fracture segment within discrete fracture networks. Different from the traditional treatment that a water-source/sink in the matrix is simplified by assuming it as a constant term, a skin factor on a fracture face is defined and introduced to represent the change in relative permeability in the matrix domain at each timestep, while the adsorption/desorption term is incorporated into the diffusivity equation to accurately calculate the shale gas production by taking the adsorbed gas in nanoscale porous media into account. Then, the theoretical model can be applied to accurately capture the two-phase flow behaviour in different subdomains. The accuracy of this newly developed model has been confirmed by the numerical simulation and then it is extended to field applications with excellent performance. The stress-sensitivity, non-Darcy flow, and slippage effect in a hydraulic fracture (HF) are found to be obvious during the production, while the initial gas saturation in a matrix and HFs imposes an evident influence on the production profile. As for an HF with a high gas saturation, the dewatering stage is missing and water from the matrix can be neglected during a short production time. For the matrix subsystem, a high-water saturation in the matrix near an HF can affect gas production during the entire stage since gas relative permeability in the HF remains low. In addition, the adsorption/desorption in the matrix subsystem can increase gas production but decrease water production. Compared to the observed gas/water production rates for field applications, the solutions obtained from the method in this work are found to be well matched, confirming its reliability and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.