Abstract

Abstract Heat pipes are passive two-phase heat transfer devices that used in various heat transport applications because of their high thermal conductance capacities with low temperature differences. One of these applications is aerospace avionics that heat pipes are exposed to transient heat loads. Although heat pipes have been one of the heat removal alternatives for compact electronic devices, they have some restrictions during the usage in such high heat flux areas. In order to use heat pipes as effective heat removal devices, operating heat load range should not be exceeded during the operation of avionics or electronic devices. Out of these operating range, heat pipes no longer perform as effective heat removal devices because of phenomena called dry-out. In this study, a novel Finite Element (FE) Analysis Method was developed to model transient heat transfer behavior in heat pipes including dry-out phenomenon. Transient heat transfer analysis using Finite Element Method (FEM) was conducted to investigate heat pipe thermal performance considering heat flux dependent thermal conductivity under randomly varying heat inputs, which were assumed as heat dissipation of an electronic device. Validation of the FE model was done by using the results given in the literature. Heat pipe was made of Al with a length of LHP = 200 mm. Heat flux and convective heat transfer boundary conditions were used at the evaporator and condenser sections, respectively. Effective thermal conductivity of heat pipe, keff, was calculated by using the heat input depended thermal resistance, Rth, values given in literature. Under transient heat loads, heat flux dependent effective thermal conductivity was defined using user defined subroutines to simulate the dry-out. The transient heat transfer analysis was conducted using ABAQUS commercially available software. Temperature differences between evaporator and condenser sections, ΔT = Te−Tc, and thermal resistance, Rth, values are calculated for varying heat input values and compared with the results that provided in literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call