Abstract

We present the results of modeling properties of the chromophore, 2-acetyl-4-(<i>p</i>-hydroxybenzylidene)-1-methyl-5- imidazolone (AHBMI), from the newly discovered fluorescent protein asFP595 inside the protein environment by using the combined quantum mechanical - molecular mechanical (QM/MM) method. In this approach, the chromophore unit and the side chains of the nearest amino acid residues are assigned to the quantum subsystem. The starting coordinates of heavy atoms were taken from the relevant crystal structures of the protein. Hydrogen atoms were added manually, and the structure of the model protein system was optimized by using QM/MM energy minimization for the trans-form of the chromophore. The Hartree-Fock/6-31G quantum chemical approximation and the AMBER force field parameters were employed in geometry optimization. The points on potential energy surfaces of the ground and first and second excited electronic states were computed with the complete active space self-consistent field approximation in the quantum subsystem under different choices of the QM/MM partitioning. Possible pathways for the trans-cis photo isomerization presumably responsible for the kindling properties of asFP595 as well as other mechanisms of photo excitation are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call