Abstract

Objective. Trans-spinal direct current stimulation (tsDCS) is a potential new technique for the treatment of spinal cord injury (SCI). TsDCS aims to facilitate plastic changes in the neural pathways of the spinal cord with a positive effect on SCI recovery. To establish tsDCS as a possible treatment option for SCI, it is essential to gain a better understanding of its cause and effects. We seek to understand the acute effect of tsDCS, including the generated electric field (EF) and its polarization effect on the spinal circuits, to determine a cellular target. We further ask how these findings can be interpreted to explain published experimental results. Approach. We use a realistic full body finite element volume conductor model to calculate the EF of a 2.5 mA direct current for three different electrode configurations. We apply the calculated electric field to realistic motoneuron models to investigate static changes in membrane resting potential. The results are combined with existing knowledge about the theoretical effect on a neuronal level and implemented into an existing lumbar spinal network model to simulate the resulting changes on a network level. Main results. Across electrode configurations, the maximum EF inside the spinal cord ranged from 0.47 V m−1 to 0.82 V m−1. Axon terminal polarization was identified to be the dominant cellular target. Also, differences in electrode placement have a large influence on axon terminal polarization. Comparison between the simulated acute effects and the electrophysiological long-term changes observed in human tsDCS studies suggest an inverse relationship between the two. Significance. We provide methods and knowledge for better understanding the effects of tsDCS and serve as a basis for a more targeted and optimized application of tsDCS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.