Abstract

The purpose of this paper is to develop a model capable of simulating traffic jams in slow axonal transport. Slowing of slow axonal transport is an early sign of some neurodegenerative diseases. Axonal swellings observed near the end stage of such diseases may be an indication of traffic jams developing in axons that cause the slowing down of slow axonal transport. Traffic jams may result from misregulation of microtubule-associated proteins caused by an imbalance in intracellular signaling or by mutations of these proteins. This misregulation leads to a decay of microtubule tracks in axons, effectively reducing the number of "railway tracks" available for molecular-motor-assisted transport of intracellular organelles. In this paper, the decay of microtubule tracks is modeled by a reduction of the number density of microtubules in the central part of the axon. Simulation results indicate that the model predicts the build-up of the bell-shaped concentration wave, as the wave approaches the bottleneck (blockage) region. This increase in concentration will likely plug the bottleneck region resulting in a traffic jam that would hinder the slow axonal transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.