Abstract

Traffic incidents occur frequently on urban roadways and cause incident-induced congestion. Predicting incident duration is a key step in managing these events. Ordinary least squares (OLS) regression models can be estimated to relate the mean of incident duration data with its correlates. Because of the presence of larger incidents, duration distributions are often right-skewed; that is, the OLS model underpredicts the durations of larger incidents. Therefore, this study applies a modeling technique known as quantile regression to predict more accurately the skewed distribution of incident durations. Quantile regression estimates the relationships between correlates and a chosen percentile—for example, the 75th or 95th percentile—while the OLS regression is based on the mean of incident duration. With the use of incident data related to more than 85,000 (2013 to 2015) incidents for highways in the Hampton Roads area of Virginia, quantile regression results indicate that the magnitudes of parameters and predictions can be quite different compared with OLS regression. In addition to predicting durations of larger incidents more accurately, quantile regressions can estimate the probability of an incident lasting for a specific duration; for example, incidents involving congestion and delay have an approximately 25% chance of lasting more than 100.8 min, while incidents excluding congestion and delay are estimated to have a 25% chance of lasting more than 43.3 min. Such information is helpful in accurately predicting durations and developing potential applications for using quantile regressions for better traffic incident management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.