Abstract
We present a modeling tool capable of computing carbon dioxide (CO2) fluxes over a non-uniform boreal peatland. The three-dimensional (3D) hydrodynamic model is based on the “one-and-a-half” closure scheme of the system of the Reynolds-Averaged Navier–Stokes and continuity equations. Despite simplifications used in the turbulence description, the model allowed obtaining the spatial steady-state distribution of the averaged wind velocities and coefficients of turbulent exchange within the atmospheric surface layer, taking into account the surface heterogeneity. The spatial pattern of CO2 fluxes within and above a plant canopy is derived using the “diffusion–reaction–advection” equation. The model was applied to estimate the spatial heterogeneity of CO2 fluxes over a non-uniform boreal ombrotrophic peatland, Staroselsky Moch, in the Tver region of European Russia. The modeling results showed a significant effect of vegetation heterogeneity on the spatial pattern of vertical and horizontal wind components and on vertical and horizontal CO2 flux distributions. Maximal airflow disturbances were detected in the near-surface layer at the windward and leeward forest edges. The forest edges were also characterized by maximum rates of horizontal CO2 fluxes. Modeled turbulent CO2 fluxes were compared with the mid-day eddy covariance flux measurements in the southern part of the peatland. A very good agreement of modeled and measured fluxes (R2 = 0.86, p < 0.05) was found. Comparisons of the vertical profiles of CO2 fluxes over the entire peatland area and at the flux tower location showed significant differences between these fluxes, depending on the prevailing wind direction and the height above the ground.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.