Abstract

BackgroundAntibody-drug conjugates (ADCs) are intended to bind to specific positive target antigens and eradicate only tumor cells from an intracellular released payload through the lysosomal protease. Payloads, such as MMAE, have the capacity to kill adjacent antigen-negative (Ag–) tumor cells, which is called the bystander-killing effect, as well as directly kill antigen-positive (Ag+) tumor cells. We propose that a dose-response curve should be independently considered to account for target antigen-positive/negative tumor cells.MethodsA model was developed to account for the payload in Ag+/Ag– cells and the associated parameters were applied. A tumor growth inhibition (TGI) effect was explored based on an ordinary differential equation (ODE) after substituting the payload concentration in Ag+/Ag– cells into an Emax model, which accounts for the dose-response curve. To observe the bystander-killing effects based on the amount of Ag+/Ag– cells, the Emax model is used independently. TGI models based on ODE are unsuitable for describing the initial delay through a tumor–drug interaction. This was solved using an age-structured model based on the stochastic process.Resultsβ∈(0,1] is a fraction parameter that determines the proportion of cells that consist of Ag+/Ag– cells. The payload concentration decreases when the ratio of efflux to influx increases. The bystander-killing effect differs with varying amounts of Ag+ cells. The larger β is, the less bystander-killing effect. The decrease of the bystander-killing effect becomes stronger as Ag+ cells become larger than the Ag– cells. Overall, the ratio of efflux to influx, the amount of released payload, and the proportion of Ag+ cells determine the efficacy of the ADC. The tumor inhibition delay through a payload-tumor interaction, which goes through several stages, may be solved using an age-structured model.ConclusionsThe bystander-killing effect, one of the most important topics of ADCs, has been explored in several studies without the use of modeling. We propose that the bystander-killing effect can be captured through a mathematical model when considering the Ag+ and Ag– cells. In addition, the TGI model based on the age-structure can capture the initial delay through a drug interaction as well as the bystander-killing effect.

Highlights

  • Antibody-drug conjugates (ADCs) are intended to bind to specific positive target antigens and eradicate only tumor cells from an intracellular released payload through the lysosomal protease

  • Because exponential/logistic tumor growth models are not applicable owing to a lack of description regarding the tumor inhibition delay by drug-tumor cell interaction, we suggest an age-structured model to elucidate the delay

  • tumor growth inhibition (TGI) model used to describe the tumor growth when considering the drug delay To overcome this problem, we propose an age-structure model [21, 22] based on a non-Markovian stochastic process

Read more

Summary

Introduction

Antibody-drug conjugates (ADCs) are intended to bind to specific positive target antigens and eradicate only tumor cells from an intracellular released payload through the lysosomal protease. Payloads, such as MMAE, have the capacity to kill adjacent antigen-negative (Ag–) tumor cells, which is called the bystander-killing effect, as well as directly kill antigen-positive (Ag+) tumor cells. (Ag–) cells, which do not directly interact with the ADCs, based on the membrane permeability [6] This is called the bystander-killing effect, which induces an additional tumor reduction. The model formulates that the amount of intracellular-released payload, the influxto-efflux ratio, and the amount of Ag+ cells among all of the cells determine the ADC efficacy and demonstrate the bystander-killing effect

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.