Abstract

We present a method for training a deep neural network containing sinusoidal activation functions to fit to time-series data. Weights are initialized using a fast Fourier transform, then trained with regularization to improve generalization. A simple dynamic parameter tuning method is employed to adjust both the learning rate and the regularization term, such that both stability and efficient training are achieved. We show how deeper layers can be utilized to model the observed sequence using a sparser set of sinusoid units, and how non-uniform regularization can improve generalization by promoting the shifting of weight toward simpler units. The method is demonstrated with time-series problems to show that it leads to effective extrapolation of nonlinear trends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.