Abstract

The authors present the study of synthesis methods for simulating the models of semiconductor rectifiers. Simulation of semiconductor rectifiers is quite studied today, but many authors carry out synthesis in their own unique way. The need to apply high technologies in variable speed drives with the development of mechanisms and working machines is growing, the automated variable speed drive is being introduced increasingly, making the energy substrate for aggregates and working machines. The relevance of this work is explained by the fact that currently developing technologies make it possible to manufacture more advanced semiconductor elements. The more relevant and significant is the study of refined digital models of electric drives containing semiconductor converters. This paper will summarize known approaches to the development of rectifiers’ digital models, as well as it will offer the authors’ own vision of this issue – taking into account as many individual features of semiconductor elements and the entire electric drive system as a whole as possible. The option proposed for consideration differs in that when developing in Matlab environment the parameters of real existing power elements and their digital analogues are consistent. The article also examines the issue of creating a digital model of the electric drive reverse system including a thyristor transducer and an engine; the transition characteristics of the refined model are illustrated. The result of this study is the analysis of different approaches to modeling semiconductor converters in electric drive systems. In this regard, a refined approach to modeling semiconductor rectifiers was considered, consisting of maximizing approximation of the model structure to real implementation, taking into account all elements, included in the structure of the ventilated electric drive. The study suggests that the developed simulation models can be used for the design of a real power converter in the conditions of a production enterprise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.