Abstract

The COVID-19 pandemic has increased the demand for life-saving devices known as ‘ventilators,’ which help critically ill patients breathe. Owing to the high global demand for ventilators and other medical equipment, many Indian nonmedical equipment companies have risen to meet this demand. This unexpected demand for ventilators during the COVID-19 pandemic, similar to that for other EOL electronic medical devices, has become a severe problem for the nation. Consequently, the healthcare industry must efficiently handle EOL ventilators, which can be outsourced to 3PRLPs. 3PRLPs play a vital role in a company’s reverse logistics activities. This study emphasises the 3PRLP selection process as a complex decision-making problem and the optimisation of order allocation to qualified 3PRLPs. As a result, this study proposes a two-phase hybrid decision-making problem. First phase combines the two multi-attribute decision-making methods to select 3PRLPs based on their assessed SPS and Second phase, the evaluated SPS was utilised as one of the objectives of a multi-objective linear programming model to allocate orders to the selected 3PRLPs. To solve the proposed model, both classical and modern approaches were used. The results show that the proposed framework can be successfully implemented in the current scenario of the healthcare industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.