Abstract

The six cylinder thermoregulatory model (SCTM) has been validated thoroughly for resting humans. This type of modeling is helpful to predict and develop guidance for safe performance of work and recreational activities. In the context of a warming global climate, updating the accuracy of the model for intense exercise in warm environments will help a wide range of individuals in athletic, recreational, and military settings. Three sets of previously collected data were used to determine SCTM accuracy. Dataset 1: two groups [large (LG) 91.5 kg and small (SM) 67.7 kg] of individuals performed 60 min of semirecumbent cycling in temperate conditions (25.1°C) at metabolic rates of 570-700 W. Dataset 2: two LG (100 kg) and SM (65.8 kg) groups performed 60 min of semirecumbent cycling in warm/hot environmental conditions (36.2°C) at metabolic rates of 590-680 W. Dataset 3: seven volunteers completed 8-km track trials (∼30 min) in cool (17°C) and warm (30°C) environments. The volunteers' metabolic rates were estimated to be 1,268 W and 1,166 W, respectively. For all datasets, SCTM-predicted core temperatures were found to be similar to the observed core temperatures. The root mean square deviations (RMSDs) ranged from 0.06 to 0.46°C with an average of 0.2°C deviation, which is less than the acceptance threshold of 0.5°C. Thus, the present validation shows that SCTM predicts core temperatures with acceptable accuracy during intense exercise in warm environments and successfully captures core temperature differences between large and small individuals.NEW & NOTEWORTHY The SCTM has been validated thoroughly for resting humans in warm and cold environments and during water immersion. The present study further demonstrated that SCTM predicts core temperatures with acceptable accuracy during intense exercise up to 1,300 W in temperate and warm environments and captures core temperature differences between large and small individuals. SCTM is potentially useful to develop guidance for safe operation in athletic, military, and occupational settings during exposure to warm or hot environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.