Abstract
The formation of a number of co- and counter-rotating coherent combustion wave fronts is the hallmark feature of the Rotating Detonation Engine (RDE). The engineering implications of wave topology are not well understood nor quantified, especially with respect to parametric changes in combustor geometry, propellant chemistry, and injection and mixing schemes. In this article, a modeling framework that relates the time and spatial scales of the RDE to engineering performance metrics is developed and presented. The model is built under assumptions of backpressure-insensitivity and nominally choked gaseous propellant injection. The Euler equations of inviscid, compressible fluid flow in one dimension are adapted to model the combustion wave dynamics along the circumference of an annular-type RDE. These adaptations provide the necessary mass and energy input and output channels to shape the traveling wave fronts and decaying tails. The associated unit processes of injection, mixing, combustion, and exhaust are all assigned representative time scales necessary for successful wave propagation. We find that the separation, or lack, of these time scales is responsible for the behavior of the system, including wave co- and counter-propagation and bifurcations between these regimes and wave counts. Furthermore, as there is no imposition of wave topology, the model output is used to estimate the net available mechanical work output and thermodynamic efficiency from the closed trajectories through pressure–volume and temperature–entropy spaces. These metrics are investigated with respect to variation in the characteristic scales for the RDE unit physical processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.