Abstract

Summary Diatoms and radiolarians are microorganisms that precipitate Opal-A to form siliceous tests that accumulate on the seafloor to form siliceous oozes. Progressive diagenesis of these deposits during burial results in thick, highly compressible reservoirs of exceptionally high porosity and low permeability, not unlike the chalk reservoirs of the North Sea. During burial and over time, the amorphous silica phase (Opal-A) becomes unstable and gradually changes in its structure to more stable, ordered Opal-A′ and crystalline forms or phases of silica, namely Opal-CT and quartz. The Opal-A→Opal-A′→Opal-CT→quartz transformation results in a naturally occurring densification and compaction process that is accelerated by an application of heat. Reservoir compaction and surface subsidence can usually be controlled by injecting fluid to control the effective stress. However, in heavy-oil diatomite reservoirs undergoing steam injection, the injected fluid causes competing effects: it controls effective stress to some degree, yet at the same time it accelerates compaction and subsidence. This paper describes selected results of a diatomite laboratory testing program and features of a unique thermal reservoir simulator formulated to handle the effects on compaction caused by stress, temperature, and time-dependent strain (creep). Elevated temperature in amorphous Opal-A diatomite is shown to be capable of causing a sample compression of 25% or more and a severe reduction in permeability. The effects of thermally induced compaction are expected to accelerate surface subsidence as diatomite steam projects mature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call