Abstract

A methodology was developed to predict the thermal exposure from a furnace onto a floor assembly specimen. In furnaces with low conductivity wall linings and gas fired burners with complete combustion, the gas attenuation effects were determined to be small indicating that radiation between surfaces and convection are the dominant modes of heat transfer. This was modeled by assigning the internal furnace wall temperature to the furnace time–temperature exposure and performing a three-dimensional heat transfer analysis on the specimen. The furnace exposure model predicted heat transfer to the specimen surface that was within 5–14% of measured heat fluxes. The proposed furnace exposure methodology was used to predict the temperature rise of steel in a floor assembly where the test specimen can view itself as well as the furnace, making radiation exchange an important aspect of the problem. Predictions were within 5–10% of the measured values, which was within the experimental uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.