Abstract

Energy relaxation in a thin molybdenum film exposed to a single laser pulse (wavelength 400 nm, pulse duration 200 fs at FWHM) has been investigated numerically. For this purpose, a two-temperature model was used accounting for the optical and thermodynamical properties of molybdenum deposited on a selection of substrates. The effect of the substrate on laser-induced film heating has been studied for the cases of fused silica, silicon, soda-lime glass as well as for a free-standing film. For a fused silica substrate, the calculated melting threshold fluence is in a good agreement with thickness-dependent experimental data available in literature. It has been found that, for Mo films with the thickness <107 nm, the softening point of the fused silica substrate is exceeded already at the Mo melting threshold fluence. This suggests the possibility of substrate damage related to glass deformation. The melting dynamics of the Mo film and the effects of energy transfer from the irradiated film to the substrate are discussed based on the modeling results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call