Abstract

We present an efficient and accurate modeling approach for wave propagation in anelastic media, based on a fractional spatial differential operator. The problem is solved with the Fourier pseudo-spectral method in the spatial domain and the REM (rapid expansion method) in the time domain, which, unlike the finite-difference and pseudo-spectral methods, offers spectral accuracy. To show the accuracy of the scheme, an analytical solution in a homogeneous anelastic medium is computed and compared with the numerical solution. We present an example of wave propagation at a reservoir scale and show the efficiency of the algorithm against the conventional finite-difference scheme. The new method, being spectral in the time and space simultaneously, offers a highly accurate and efficient solution for wave propagation in attenuating media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.