Abstract

We use the TM2 three‐dimensional atmospheric tracer model with a methane source‐sink budget based on existing literature to simulate small spatial and temporal variations in the 13C/12C ratio of atmospheric methane. The results show that δ13C varies markedly with wind direction everywhere outside the extratropical Southern Hemisphere (ETSH). Within the ETSH, both methane mixing ratio and δ13C have regular seasonal cycles with differing and latitude‐dependent phases. Phase diagrams constructed from these seasonal cycles, showing changes in δ13C versus changes in mixing ratio, have elliptical shapes. The slope of the major axis of these ellipses is determined by the kinetic isotope effect (KIE) of the single atmospheric methane removal process used in the model. The ellipse eccentricity is determined by seasonal variation in the source δ13CH4, which is dominated by the biomass burning source because of its isotopic enrichment relative to other sources. Comparison of the model results, for a KIE based on CH4 + OH oxidation, with observations in the South Pacific region shows significant discrepancies in both the ellipse major axis slopes and eccentricities. We suggest that this is an indicator of an additional sink process that discriminates strongly against 13CH4. Such a sink could be active chlorine in the marine boundary layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.