Abstract

Abstract. In this paper we propose new models of two complementary optical sensors to obtain 2.5-D measurements of opaque surfaces: a deflectometric and a plenoptic sensor. The deflectometric sensor uses active triangulation and works best on specular surfaces, while the plenoptic sensor uses passive triangulation and works best on textured, diffusely reflecting surfaces. We propose models to describe the measurement uncertainties of the sensors for specularly to diffusely reflecting surfaces under consideration of typical disturbances like ambient light or vibration. The predicted measurement uncertainties of both sensors can be used to obtain optimized measurements uncertainties for varying surface properties on the basis of a combined sensor system. The models are validated exemplarily based on real measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.