Abstract

The aim of this study was to model the Undrained Shear Strength (USS) of soil found in the coastal region of the Niger Delta in Nigeria with some soil properties. The undrained shear strength (USS) is a key parameter needed for most geotechnical/structural designs. Accurate determination of the USS of soft clays can be challenging to obtain in the laboratory due to the difficulty in remoulding the clay to its in-situ conditions before testing and more accurate test such as Cone Penetration test (CPT) can be quite expensive. This study was carried out at Escravos site which is located in Delta state, Nigeria. Three Boreholes were drilled and soil samples were collected at 0.75 m intervals up to a depth of 45 m. Laboratory tests were used to obtain the moisture content, bulk unit weight, liquid and plastic limit, while CPT was used in obtaining the undrained shear strength. Classification of the soil samples was done by adopting the Unified Soil Classification System and various models relating the USS with the soil properties were developed. The result showed that most of the soils at Escravos site were predominately inorganic clay of high plasticity which are problematic due to the expansion and shrinking nature of this type of soil. The model developed showed that the soil properties that gave the best fit with the USS were the moisture content and effective stress of the soil. The coefficient of determination (R2) and the root mean square error (RMSE) obtained for this model were 0.805 and 6.37 KN/m2, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.