Abstract

Three types of transducer beam models are developed for obtaining the bulk waves generated by a plane piston transducer radiating through a planar fluid—solid interface. The first type, called the surface integral model, is based on a Rayleigh—Sommerfeld-like integral that requires a two-dimensional surface integral to be evaluated. The second model, called the boundary diffraction wave (BDW) paraxial model, simplifies the two-dimensional integration of the surface integral model to a one-dimensional line integration. The third type of model, called the edge element model, is shown to be a novel way of efficiently evaluating the two-dimensional surface integration of the surface integral model. The limitations of these models for simulating inspections near critical refracted angles and near the interface are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.