Abstract
A renewed electrochemical model for the oscillatory electro-oxidation of formic acid on platinum in acidic medium is presented. The model includes recently reported mechanistic findings and evaluates three reaction pathways towards the production of CO2. Two of these processes consist of dehydrogenation and dehydration of the formic acid with adsorbed formate species as common intermediate. The third and most active pathway includes a fast oxidation of the formate ion. The proposed mechanism is translated into a kinetic model and tested in numerical simulations under voltammetric and oscillatory regimes. Numerical results are further compared with experimental ones. A successful adjustment of the oscillatory characteristics, namely frequency and amplitude of the oscillations suggest a good approximation to the actual mechanism of the oxidation of formic acid on platinum. The role of electrochemical oscillations in mechanistic studies is discussed and a comparison with previous models is also provided. Finally, some perspectives are suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.