Abstract

The understanding of the processes of dissolution, volatilization, and gas‐liquid partitioning in porous media is very limited. The few models which attempt to characterize the transport of volatile organics in variably saturated media all assume that mass transfer processes are at equilibrium. In addition, gas phase advection is neglected by assuming that gas phase pressures are uniformly atmospheric and that density gradients are negligible. In this study a model was developed to solve for water phase flow and transport and density dependent gas phase flow and transport. Simple expressions for dissolution, volatilization, and gas‐liquid partitioning, employing the concept of an overall mass transfer coefficient, were incorporated into the model. The transport of trichloroethylene in a variably saturated vertical cross section, under a variety of conditions, was simulated. Results of the simulations appeared qualitatively correct. The importance of gas phase processes in increasing subsurface contamination from volatile organics, and in dissipating residual amounts of these substances, was demonstrated. The lack of similar analytical and/or numerical models, or suitable experimental studies, excluded the possibility of validating, or verifying, the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.