Abstract

Transport of oil through pipelines is at an all-time high and so is the risk of oil spill accidents. The July 2010 spill of diluted bitumen into the Kalamazoo River was the largest release of heavy crude into an inland waterway in the history of United States. After extensive cleanup and recovery efforts, substantial residual deposits from the oil spill remained in the river system, mainly due to the formation of oil–particle aggregates (OPAs). Understanding the conditions under which OPAs can be suspended, transported and deposited is important for river management. Concerns about OPAs reaching Lake Michigan motivated this work. A three-dimensional Eulerian/Lagrangian model for OPA transport was developed for Morrow Lake in the Kalamazoo River, using specified OPA properties based on laboratory experiments. The three-dimensional model included the Morrow Lake dam operational rules as well as wind effects, which might increase the risk of resuspension and transport of OPA downstream. The usage of the model as a management tool is illustrated; the suitability of the model framework to incorporate the more complex processes of OPA formation transformation is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.